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B.Sc. DEGREE EXAMINATION – MATHEMATICS

SIXTH SEMESTER – NOVEMBER 2013
MT 6603/MT 6600 - COMPLEX ANALYSIS
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Time : 1:00 - 4:00

PART-A

Answer ALL questions: (10 x2=20)

1. Define the continuity of a function of a complex variable.

2. Show that 4224 6 yyxxu  is harmonic.

3. Prove that MLdzzf
c

 )( where }/)(max{ czzfM  and L is the length of c.

4. State Morera’s theorem.

5. Find the zeros of
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6. Define removable and essential singularities.

7. Define residue of a function at a point.

8. State the Argument principle.

9. Find the invariant points of the transformation
1
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10. Define a bilinear transformation.

PART – B

Answer any FIVE questions: (5x8=40)

11. Show that the function
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zf is not differentiable at z = 0.

12. Show that 22log yxu  is harmonic and determine its conjugate.

13. State and prove Liouville’s theorem.

14. Expand zzezf 2)(  in a Taylor’s series about the point z = -1.

15. Classify the singularity of the function 2
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16. State and prove Residue theorem.
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17. Show that any bilinear transformation can be expressed as a product of translation, rotation,

magnification or contraction and inversion.

18. Find the bilinear transformation which maps the points z = 0,-i,-1 into the points

w = i, 1, 0 respectively.

PART - C

Answer any TWO questions: (2x20=40)

19. a) Derive Cauchy Riemann equations in polar coordinates,

b) If f(z) is an analytic function show that
2 2

2 2
2 2 ( ) 4 ( )f z f z
x y

       
. (12 + 8)

20. a) State and prove Cauchy’s integral formula.

b) Using Cauchy’s integral formula to evaluate  C

z

dz
zz
e

2)1)(2(
where C is 3. (12 8)z  

21. a) State and prove Laurent’s theorem.

b) Expand
)2)(1(

)(
zz
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 in a laurent’s series valid for (i) 1z (ii) 21  z

(iii) .2z (12+8)

22. a) Using contour integration along the unit circle , evaluate  
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b) Prove that any bilinear transformation which maps the unit circle 1z onto the unit

circle 1w can be written in the form 
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 where  is real number. (12+8)
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